Water footprint of bioenergy and other primary energy carriers

Mar 2008

This report assesses the water footprint (WF) of bioenergy and other primary energy carriers. It focuses on primary energy carriers and expresses the WF as the amount of water consumed to produce a unit of energy (m3/GJ). The report observes large differences among the WF’s for specific types of primary energy carriers. For the fossil energy carriers, the WF increases in the following order: uranium (0.09 m3/GJ), natural gas (0.11 m3/GJ), coal (0.16 m3/GJ), and finally crude oil (1.06 m3/GJ). Renewable energy carriers show large differences in their WF. The WF for wind energy is negligible, for solar thermal energy 0.30 m3/GJ, but for hydropower 22.3 m3/GJ. For biomass, the WF depends on crop type, agricultural production system and climate. The WF of average biomass grown in the Netherlands is 24 m3/GJ, in the US 58 m3/GJ, in Brazil 61 m3/GJ, and in Zimbabwe 143 m3/GJ. Based on the average per capita energy use in western societies (100 GJ/capita/year), a mix from coal, crude oil, natural gas and uranium requires about 35 m3/capita/year. If the same amount of energy is generated through the growth of biomass in a high productive agricultural system, as applied in the Netherlands, the WF is 2420 m3. The WF of biomass is 70 to 400 times larger than the WF of the other primary energy carriers (excluding hydropower). The trend towards larger energy use in combination with increasing contribution of energy from biomass to supply will bring with it a need for more water. This causes competition with other claims, such as water for food crops.

By: P.W. Gerbens-Leenes, A.Y. Hoekstra, Th.H. van der Meer (UNESCO-IHE)

 
download this document:   535 kb
home