Conclusions of the 4th GBEP Task Force meeting on GHG methodologies
Grand Hyatt Sao Paulo (Sao Paulo, Brazil), 17 November 2008

The Greenhouse Gas (GHG) Methodologies Task Force of the Global Bioenergy Partnership (GBEP) held its 4th meeting in Sao Paulo on 17 November 2008. This task force was created to design a common methodological framework for lifecycle analysis (LCA) of greenhouse gas emissions associated with biofuel production and use. At the 2nd meeting of the Task Force a ten box LCA framework was proposed, and four subgroups were charged with the work of developing detailed reporting checklists for each step in the LCA. At the 3rd meeting, these subgroups presented progress on their work. The primary purpose of the 4th meeting was to achieve consensus on the draft LCA framework so that it can be presented to the GBEP Steering Committee at its upcoming meeting on 15 December.

All four subgroups (led by the USA, the European Commission, Germany and Brazil) had achieved considerable progress since the 3rd Task Force meeting, such that the LCA framework was nearly complete at the outset of the 4th meeting. Subgroup leaders presented their progress to the group, and the Task Force supported the majority of the updates to the LCA. A few areas required further discussion, including the organization of the “Land Use Change” checkbox, the provision of reporting options for transport fuels in the “Fuel Use” checkbox, the need for an option to report methodological assumptions at several points in the LCA, and a number of technical points.

Following discussion of these areas, the Task Force achieved consensus on Boxes 1-9 of the 10 box LCA framework. This makes it possible to conclude work on Box 10, “Comparison with Fossil Fuels”; this Box could not be finalized until Boxes 1-9 were complete. Brazil, the subgroup leader for Box 10, and other Task Force members agreed to finalize Box 10 through email communications, so that a complete draft of the LCA framework can be presented to the GBEP Steering Committee on 15 December. The last updated and agreed version of the framework is attached to this document in Annex 1.

Remaining issues and subgroup tasks
The only remaining issue about the framework definition is the finalization of Box 10. All Task Force members agreed to support subgroup leader Brazil in completing this work prior to the next Steering Committee meeting. The timeline for work is listed below—the Chair requests that all parties provide timely input on this task, to ensure that it is completed on schedule.

Regarding the next steps for the Task Force, there was a proposal from one Partner to make qualitative recommendations about which aspects should be included in a GHG LCA of bioenergy. There was also discussion about some Task Force members volunteering to test their own methodologies against the GBEP framework and then to share findings with the Task Force for a non-judgmental discussion. The Co-Chairs also raised the question of the format of the GBEP framework that the Task Force
would like to be made public. These issues were not resolved and will be discussed at the next Steering Committee meeting.

Timeline

- 18 Nov: Chair sent updated GHG framework to the Secretariat, who forwarded it to subgroup leader Brazil;
- 27 Nov: Brazil emails completed Box 10 to the Task Force for comment;
- 5 Dec: Deadline for responses from Task Force members to Brazil, copying in the Secretariat;
- 10 Dec: Deadline for Brazil to send completed work, revised in light of comments, to the Secretariat for circulation;
- 15 Dec: Full LCA framework to be presented to the GBEP Steering Committee, for discussion and decision also on the way forward towards the report publication in March 2009.
Annex 1: LCA framework as of 19 November 2008

<table>
<thead>
<tr>
<th>1. GHGs covered</th>
<th>2. Source of biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ ___</td>
<td>Waste ___ (begin at Box 6)</td>
</tr>
<tr>
<td>CH₄ ___</td>
<td>Non-waste ___ (begin at Box 3)</td>
</tr>
<tr>
<td>N₂O ___</td>
<td></td>
</tr>
<tr>
<td>HFCs ___</td>
<td></td>
</tr>
<tr>
<td>PFCs ___</td>
<td></td>
</tr>
<tr>
<td>SF₆ ___</td>
<td></td>
</tr>
<tr>
<td>Other __________</td>
<td></td>
</tr>
</tbody>
</table>

Please report global warming potential used for each GHG covered.

* Please explain definition of waste:
1. ____ Substance that the holder intended to discard.
2. ____ Substance that had zero or negative economic value.
3. ____ Substance for which the use was uncertain.
4. ____ Substance that was not deliberately produced and was not ready for use without further processing.
5. ____ Substance that could have adversely affected the environment.
6. Other: ____
Accounting for land use change in a lifecycle framework for estimating emissions for bioenergy is a complicated matter. Many institutions around the world are developing their methodologies. Some account for land use change in a single, holistic assessment while others sub-divide bioenergy-associated land use change into direct and indirect changes. Some further distinguish between indirect land use changes that are domestic versus those that are international. The reporting framework presented below is intended to be flexible in order to clarify which of these multiple approaches is taken by the methodology being described.

Added introductory question:
___ Direct land use changes are taken into account
OR
___ Indirect land use changes are taken into account
OR
___ A combination of both is included

Explain the choice.

I. Direct land use changes are accounted for (Y or N). If yes:

1. Identify the reference period or scenario
 _____ Historic (identify year or period)
 _____ Business-as-Usual (BAU) scenario (identify time frame: _________)
 _____ Other (explain)

Describe how the methodology attributes this type of land use change to biofuels

Explain key reference assumptions and characteristics relevant to estimating GHG emissions from direct land use change. Examples include (but are not limited to) identifying or describing:
- System boundaries (such as sector, activity, and geographic coverage)
- For BAU scenarios, assumed trends in key variables and land uses
- Omitted emissions sources
- Time period over which land use change emissions are allocated

2. Briefly describe the type of direct land-use changes accounted for (2 – 3 paragraphs). Examples include (but are not limited to) identifying or describing:
 - Areas of land that change land use by type (such as forest, grassland, peat lands, pasture, to feedstock production)
 - Carbon stocks, before shift to feedstock production, on lands that change land use by type

3. The following impacts of direct land use change are accounted for:
 - Accounted for net changes of carbon stocks in:
 _____ living biomass, _____ dead organic matter, _____ soils
 _____ Changes in carbon sequestration in products (such as harvested wood products)

4. The methodology and data used are publicly available: Methodology (Y/N), Data (Y/N)
IIa. Domestic indirect land use changes are accounted for (Y or N). If yes:

1. Identify the reference period or scenario
 - Historic (identify year or period)
 - Business-as-Usual scenario (identify time frame: __________)
 - Other (explain)

Describe how the methodology attributes this type of land use change to biofuels

Explain key reference assumptions and characteristics relevant to estimating GHG emissions from domestic indirect land use change. Examples include (but are not limited to) identifying or describing:

- System boundaries (such as sector, activity, and geographic coverage)
- For BAU scenarios, assumed trend in key variables and land uses
- Rules or methods used to assign indirect land use changes to biofuels (Such as, whether emissions allocated to products using a marginal, average, or other approach)
- Time period over which land use change emissions are allocated

2. Briefly describe the type of domestic indirect land-use changes accounted for (2 – 3 paragraphs). Examples include (but are not limited to) identifying or describing:

- Areas of land that change land use by type (such as forest, grassland, peat lands, pasture, to commodity production)
- Carbon stocks, before shift to feedstock production, on lands that change land use by type

3. The following impacts of indirect domestic land use change are accounted for:
 - Accounted for net changes of carbon stocks in:
 - living biomass, ___ dead organic matter, ___ soils
 - Changes in carbon sequestration in products (such as harvested wood products)

4. The methodology and data used are publicly available: Methodology (Y/N), Data (Y/N)

IIb. International indirect land use changes are accounted for (Y or N). If yes:

1. Identify the reference period or scenario
 - Historic (identify year or period)
 - Business-as-Usual scenario (identify time frame: __________)
 - Other (explain)

Describe how the methodology attributes this type of land use change to biofuels

Explain key reference assumptions and characteristics relevant to estimating GHG emissions from international indirect land use change. Examples include (but are not limited to) identifying or describing:

- System boundaries (such as sector, activity, and geographic coverage)
- For BAU scenarios, assumed trend in key variables and land uses
- Rules or methods used to assign international indirect land use changes to domestic biofuels (Such as, whether emissions allocated to products using a marginal, average, or other approach)
- Time period over which land use change emissions are allocated

2. Briefly describe the type of international indirect land-use changes accounted for (2 – 3 paragraphs). Examples include (but are not limited to) identifying or describing:

- Areas of land that change land use by type (such as forest, grassland, peat lands, pasture, to commodity production)
- Carbon stocks, before shift to feedstock production, on lands that change land use by type

3. The following impacts of international indirect land use change are accounted for:
 - Accounted for net changes of carbon stocks in:
 - living biomass, ___ dead organic matter, ___ soils
 - Changes in carbon sequestration in products (such as harvested wood products)

4. The methodology and data used are publicly available: Methodology (Y/N), Data (Y/N)

3b. Land use changes due to bioenergy production

___ Domestic indirect land use change is taken into account OR ___ International indirect land use change is taken into account OR ___ Both are taken into account OR ___ No distinction is made

Explain decision

4. Biomass feedstock production on farms and in forests

Focus on Direct Emissions:

Sources of direct GHG emissions are accounted for:

- Emissions from operating farm/forestry machinery
- Emissions from energy used in irrigation
- Emissions from energy used in preparing feedstocks (drying grains, densification of cellulosic biomass, etc.)
- Emissions from energy used in transport of feedstocks
- CO2 emissions from lime/dolomite applications
- On-farm N2O emissions from nitrogen fertilizers (direct, volatilization, runoff/leaching)
- CH4 emissions from lands (especially wetlands)
- Other (please specify)

For all checked, clarify assumptions

The methodology and data used are publicly available: Methodology (Y/N), Data (Y/N)

Focus on Embodied Emissions:

Sources of GHG emissions embodied in inputs accounted for:

- Emissions embodied in the manufacture of farm/forestry machinery
- Emissions embodied in buildings
- Emissions embodied in the manufacture of fertilizer inputs.
- Emissions embodied in the manufacture of pesticide inputs
- Emissions embodied in purchased electricity
- Emissions embodied in the production of seeds
- Other (please specify)

For all checked, clarify assumptions

The methodology and data used are publicly available: Methodology (Y/N), Data (Y/N)
5. By-products and co-products

By-products or co-products are produced (Y or N)

1. ___ By/Co-products from the biomass are accounted for.
2. ___ By/Co-products from non-biomass feedstocks are accounted for.

3. **Explain definition of by/co-products:**

4. ___ An allocation method is used
 - 4a. ___ Allocation by mass
 - 4b. ___ Allocation by energy content
 - Method to determine energy content: ___
 - 4c. ___ Allocation by economic value
 - Method to determine economic value: ___
 - 4d. ___ Other allocation method
 - Specify method: ___
 - Method to determine parameters needed: ___

5. ___ A substitution method is used
 - Method to determine the exact type of use/application of a co-product: ___
 - Method to determine what product the co-product would substitute for and what the associated GHG emissions are of that product: ___

6. ___ Another method or combination of methods is used
 - Specify method: ___
 - Method to determine parameters needed: ___

For relevant sections, clarify assumptions
6. Transport of biomass

Biomass is transported from farm/plantation/forest to processing plant (Y or N)

If yes:

1. ____ The biomass transported in a different commodity type.
 1a. ____ A description of intermediate processing steps is available.
 1b. ____ Emissions associated with intermediate processing are accounted for (including, e.g., electricity used for processing).

2. ____ There is a multi-stage transport chain (e.g. truck to ship to truck or train).
 2a. List all stages in the transport chain.
 2b. Specify the stages for which emissions are accounted.

3. Transport from the production site to the use processing plant is dedicated to this purpose. (Y or N)
 If Yes:
 3a. ____ All transport emissions are included
 If No:
 3b. ____ A portion of transport emissions are allocated, and the allocation methodology is described.

4. ____ Return run of transport equipment is accounted for.
 4a. During the return run, transport equipment is:
 ____ empty ____ otherwise utilized

For relevant sections, clarify assumptions
7. Processing into fuel

The biomass requires processing to produce fuel (Y or N)

1. ____ GHG emissions associated with material inputs used in the conversion process (e.g. chemicals, water) are accounted for.

2. ____ GHG emissions associated with the energy used in the conversion process are accounted for.

2a. Specify the method used to account for grid-related emissions (e.g. average/marginal, national/regional, actual/future): ________________

3. ____ GHG emissions from wastes and leakages (including waste disposal) are accounted for.

4. ____ Other GHG emissions from the process are accounted for.

4a. List which ones: ____

5. ____ GHG emissions associated with the plant construction are accounted for.

5a. Estimates of emissions associated with plant construction have been pro-rated to account for:

- ____ Other uses of the plant
- ____ Design life of the plant
- ____ Other parameters; specify which ones: ______

For relevant sections, clarify assumptions
8. Transport of fuel

Fuel is transported from processing plant to use site (Y or N)

If yes:
1. ____ The fuel transported in a different commodity type.
 1a. ____ A description of intermediate processing steps is available.
 1b. ____ Emissions associated with intermediate processing are accounted for (including, e.g., electricity used for processing).

2. ____ There is a multi-stage transport chain (e.g. truck to ship to truck or train).
 2a. List all stages in the transport chain.
 2b. Specify the stages for which emissions are accounted.

3. Transport from the processing plant to the use site is dedicated to this purpose. (Y or N)
 If Yes:
 3a. ____ All transport emissions are accounted for.
 If No:
 3b. ____ Transport emissions are pro-rated, and the methodology for pro-rating is described.

4. ____ Return run of transport equipment is accounted for.
 4a. During the return run, transport equipment is:
 _____ empty _____ otherwise utilized

For relevant sections, clarify assumptions
9. Fuel use

For solid biomass and liquid and gaseous fuels used in stationary applications:

Are you addressing electricity and/or heat (thermal energy)?

If yes:
- Is it a CHP plant? (Y/N)
- Electric efficiency of the use process _____
- Thermal efficiency of the use process _____
- Electricity sent to a general grid (Y/N)

(Following questions interfere with the scope of Subgroup 2 “co-products” and sub-group 4 “replaced comparators”)

In case of CHP:
- Indicate which method is used to account for both – electricity and heat – vis-à-vis box 5

Remark 1: the method for accounting electricity and heat is connected with the question concerning the “replaced comparator” (Box 10). The subgroup discussed the diverse options and tended to treat electricity and heat like equal co-products with specific benefits.

Are you addressing specific emissions by the usage?
- Which conversion/combustion technology is applied?
- Is the technique specifically causing significant emissions of N2O (e.g. CFB-type boilers) CH4, (e.g. low level technique or small-scale)?
- Is the biomass tainted with fossil material? (e.g. in case of waste sources)
- If yes; Do you have analysis concerning the degree of fossil content?

(Following questions also partly interfere with the scope of Subgroup 4, Box 10 “replaced comparators”)

Are you addressing a technology upgrade (e.g. pile burning to modern energy technology)?
- If yes:
 - Do you have emission data on the replaced way of biomass burning?

For relevant sections, clarify assumptions

For transport fuels:

1. Are you addressing miles (km) per energy unit?
 - If yes, ask …
 - …describe how energy efficiency is factored into fuel use analysis.

2. Are you addressing tailpipe gas?
 - If yes, ask …
 - how does method account for tail pipe emissions?
 - e.g.: are CO2 emissions associated with combustion source and CO2 associated with feedstock sink netted out.
 - e.g.: are CH4 and N2O emissions from combustion accounted?
10. Comparison with replaced fuel

1. Identify Methodology.
2. This methodology is publicly available (Y or N)
3. Are you addressing the LCA of fossil fuel? (Y or N)

For crude oil:
1. Specify type of crude (e.g. tar sands, heavy oil, pre-salt):

2. There is an associated natural gas
 2a. Treatment of associated natural gas:
 ____ flaring ____ reinjection ____ processing/direct use
 2b. There is a natural gas processing point to remove liquids
 2c. Emissions from extracted liquids are accounted for
 2d. Emissions for electricity production are accounted for
3. The crude/natural gas is transported
 3a. Transportation is: ___ domestic ___ international ___ both
 3b. Emissions are accounted for:
 ___ domestic ___ international
 3c. Fugitive emissions during transport are accounted for
 3d. Country-specific parameters are included in emission calculations
 for domestic transport.
 3e. Return journeys of transport fleet are accounted for, when
 appropriate.
4. The production/transport system involves liquified natural gas
 4a. Emissions from the regasification plant are accounted for
5. Fuel production includes a refining process
 5a. Direct refinery emissions are accounted for
 5b. Embodied refinery emissions (plant, machinery) are accounted for
 5c. Energy embodied in chemical products (catalizers, solvents, etc.) are
 accounted for
 5d. Fugitive emissions are accounted for
 5e. Emissions for hydrogen production are accounted for
6. There are significant co-products produced
 6a. Emissions associated with co-products are accounted for
 6b. These accounting methodologies are publicly available