Potential in microalgae production in developing countries

GBEP Bioenergy Week, Maputo Mozambique, 2014

Food and Agriculture Organization of the United Nations
Microalgae has highest yields and can be grown everywhere

Highest yields!

<table>
<thead>
<tr>
<th></th>
<th>Liter per hectare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapeseed</td>
<td>1,500</td>
</tr>
<tr>
<td>Palm</td>
<td>5,200</td>
</tr>
<tr>
<td>Algae*</td>
<td>45,000</td>
</tr>
</tbody>
</table>

* Algasol Renewables’ business case with productivity of 35 g/m²* day and oil content of 40%.

Can be grown everywhere!

Multiple application areas!

Algae biomass production based on active CO₂ sequestration:

- Human and animal nutrition (high value products)
- Transportation fuels
Limitations of Alternative Cultivation Systems

Open ponds
- High contamination risk
- Very low biomass concentration
- High energy consumption
- Fixed design
- Shading impacts concentration
- Need to circulate entire biomass
- Temperature control needed

Tube & Flat panels
- High CAPEX
- Shading impacts concentration
- Need to circulate entire biomass
- Temperature control needed

Fermentation
- Very high CAPEX
- Not industrially scalable
- Requires additional feedstock (sugar)
- Food versus fuel debate
Algasol versus conventional growth systems

Algasol

USD$ 52,500/ha

Open ponds

USD$ 500,000/ha

Tube & Flat Panels

USD$ 8,000,000/ha

Fermentation

USD$ 18,000,000+/ha
Algae Market Opportunities

Algasol enables access to numerous multibillion dollar industries, including:

animal feed (fishmeal), biofuels, nutraceuticals (DHA/EPA omega-3s), and pharmaceuticals
High Value Target Markets

- **Nutritional & Consumer Products**: $50+ Billion
- **Animal Feed**: $100+ Billion
- **High Value Chemicals**: $200+ Billion

Total: $350+ Billion

Source: FAO, Jeffries Research, US Grain Council, Index Mundi, IBISWorld
What makes Algasol’s floating PBR technology unique?

“Algasol Renewables provides a critical and innovative method for micro algae biomass production. Its modular floating bag technology, a new variation of photobioreactors (PBRs), provides a low-cost design coupled with industrial scalability, optimal light exposure, high biomass concentration, low energy consumption, and efficient system control.”

Floating PBR technology with superior ILUC profile

- Corn ethanol
- Cellulosic ethanol
- Brazilian sugarcane ethanol

ILUC?

- Algasol’s floating PBR technology
- Deployment directly in the ocean or in ponds on land (non-arable land)
Competitive Advantages Summary

1. **Universal Deployment**: non-arable land (in ponds) and in the oceans

2. **Lowest-Cost PBR**: both CAPEX & OPEX; Industrial Scalability

3. **High Yields and Concentrations**: optimal light exposure (limited photo inhibition), efficient stirring, temperature control, internal aeration system

4. **Resource Efficient**: water, energy, nutrients, CO2, material components of technology

5. **No Biofouling**

6. **Weather Protection System**
Outstanding Micro Algae Biomass Yields & Concentrations

Algasol’s biomass growth and concentrations exceeded lab and outdoor targets, achieving yields and concentrations as high as 70g/m²/day and 12g/L/day, respectively.

- Up to 100x greater biomass concentration than open ponds
- 2 to 3x greater biomass concentration than tube reactors
Highest Micro Algae Biomass Concentration

What determines biomass concentration (solid matter to total volume)?
• Light exposure, CO₂ distribution, PBR (sub-unit) volume, type of micro algae etc.

Dewatering through centrifuging a significant cost factor

• Centrifuge capacity [CAPEX]
• Energy consumption [OPEX]

➥ 40x more water in open ponds than tube reactors
➥ 70% less water in Algasol PBR compared to tube reactors
➥ Business case target exceeded in Alga4 PBR
PBR Price List

“Plug-and-play” PBR – low cost, high yield and industrially scalable

<table>
<thead>
<tr>
<th>PBR</th>
<th>Surface Area [(\text{M}^2)]</th>
<th>Reactor Volume [(\text{M}^3/\text{Liters})]</th>
<th>Price* (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alga4</td>
<td>10</td>
<td>0.5/500</td>
<td>2,175</td>
</tr>
<tr>
<td>Alga5</td>
<td>40</td>
<td>2/2,000</td>
<td>2,475</td>
</tr>
<tr>
<td>Alga6</td>
<td>250</td>
<td>12.5/12,500</td>
<td>3,375</td>
</tr>
</tbody>
</table>

*X-Warehouse, excluding, if applicable, sales tax
3 main components of the patent:

1. Concept of controlling the position of a closed photobioreactor by providing a density difference between the algae culture inside the photobioreactor and the surrounding water

2. Density Management System for submerging/angling the PBR

3. Internal Aeration System
Questions?