Integrated bioenergy tree crops in south-western Western Australia enhance water quality and environmental outcomes

John McGrath1,3

Kevin Goss2, John Bartle3, Richard Harper1

(Murdoch University1Kevin Goss Consulting2, Department of Parks and Wildlife3,)
Issues

- The environment of south-west WA
- Dryland salinity:
 - Hydrological processes & scale
- Developing biomass production systems
 - Deliver economic biomass
 - Improve water quality
Regional climate variation in southern WA

Rainfall

Evaporation

South West WA - Annual Rainfall

South West WA - Annual Evaporation
WA Soils:
deeply weathered, leached, infertile, salt stored at depth, low relief
Reduced water use leads to dryland salinity

Audit.ea.gov.au/ANRA/land/docs/national/Salinity_Salt_AUS.html
Salinity impacts

Extent of salinization

- Currently 1 m ha
- 3.0 – 4.5 M ha predicted
- > 400 species at risk
Reasons/Drivers for bioenergy programs

- **South West WA**
 - Biodiversity hotspot
 - 16 M ha in the wheatbelt (600-300 mm)

- **Mitigate the hydrologic imbalance**
 - Protect biodiversity
 - Maintain agriculture

- **Mitigate climate change**
 - Bioenergy

- **Additional rural income**
 - Farms, industry
Integrating trees to capture water & maintain production

Conceptual water balance by Ellis et al. (1999, 2001) modified by Bartie et al 2011
Project status (1)
Knowledge

 - Growing & managing mallees
 - Harvest & delivery systems/supply chain logistics
 - Economic modeling of tree crops in whole farm systems

- Operational practices for large-scale biomass supply can be specified.
Project status (2)
Implementation

- Large scale commercial development hasn’t eventuated:
 - Current commercial conditions (international/national)
 - Weakening of policy support
 - Planting stalled since 2007 (13,000 ha)

- Small regional industries - combined heat & power
 - Mallee biomass identified as a prospective feedstock

- WA work on pyrolysis for biofuels (Curtin Uni.)
 - Testing pre-commercial prototypes
Positive impacts on water quality

- Scale & high cost of salinity
 - Prioritize valuable and protectable assets,

- Multiple treatments required
 - Single actions - won’t prevent salinization
 - Combined – salinity can be mitigated

- Improved aquatic and wetland systems
 - Natural Diversity Recovery Catchments, Toolibin Lake (RAMSAR wetland), protected by:
 - Planting integrated trees
 - reduces groundwater recharge
 - Diverting saline inflows (early season)
 - Pumping to suppress groundwater

Positive impacts on water quality
Positive impacts for water availability

- **Low rainfall areas (<600 mm)**
 - Reduced salinity increases farm water availability

- **Higher rainfall areas (>600 mm)**
 - Water supply catchments have marginal salinity (TSS >500 ug g\(^{-1}\)) from clearing
 - Revegetation reduces overall water flows, but increases the supply of potable water
Key enabling factors

- **Broad recognition of dryland salinity:**
 Rural communities, policy, NRM & water professionals

- **Governments prioritized natural resource management:**
 - 1980-2010 favorable policies & funding
 - Expertise in government agencies

- **Climate change:**
 - Trees provide opportunities for renewable energy

- **Economic analysis demonstrating that:**
 - Farm businesses alone can’t fund salinity mitigation
 - Trees provide viable mitigation at the necessary scale
Achieved outcomes

- Understand the role of trees in salinity control
 - Multiple perennial systems and engineering required to rebalance hydrology
- Developed effective mallee production systems.
 - Systems produce biomass & improve water quality
 - Design criteria for integrating mallee into agriculture,
- All components of the supply chain investigated
 - Combined chipper/harvester
 - an operational prototype is under construction
- Understand prospective biomass processing options and likely early commercial developers
Main challenges

- **Policy challenges**
 - Maintaining positive policies (salinity, renewable energy and carbon)
 - Multiple policy layers (State and Commonwealth)

- **Technical challenges**
 - Reducing the cost of biomass: (species, productivity, systems)
 - Quantifying competition with crops
 - Developing a biomass supply chain

- **Financial challenges**
 - Variable environment funding (policy changes)
 - Uncertainty for farmers and environmental programs
 - Competition: solar and wind
 - Decline in oil prices
Potential for scaling-up & replicability

- **Salinity requires large scale response**
 - Existing mallees ~13,000 ha
 - Potential Woody biomass - WA wheat belt: ~1.5 - 2 M ha; ~10 M tonnes dry biomass/year
 - Use of cropping residues?
 - several million tonnes of biomass

- **Adoption across Australia’s cropping regions**
 - Multiply the potential resource 3-5 fold

- **Reduce salinity in WA water supply catchments**
 - Land clearing increased salinity (same process)
 - Integrated systems may be applicable ~100,000 ha, 100 – 200 GI water with lower salinity
Summary

- Dryland salinity is extensive across southern Australia
- Understand hydrological processes
- Large scale and cost of mitigation mean multiple actions required
- High water use systems are an important component of salinity mitigation
- Effective biomass production systems developed
- Current political and economic uncertainties have restricted expansion
Eucalypts for bioenergy
Goldfields ‘Woodlines’ 1900 -1965

- Primary energy source 1900 -1945
- 3 M ha of woodlands harvested
- ~30M tonnes of wood
Acknowledgements

- Commonwealth and WA State governments
- Department of Environment and Conservation (DEC)/Department of Parks and Wildlife
- Department of Agriculture WA
- CSIRO
- Dryland Salinity Cooperative Research Centre (2000-06)
- Future Farm Industries Cooperative Research Centre (FFI CRC), 2007-14
- Numerous colleagues: Kevin Goss (FFI CRC), John Bartle (DEC/DPaW), Prof. Richard Harper (Murdoch University)