GHANAIAN WOOD ENERGY VALUE CHAIN

Beatrice Darko Obiri (PhD)

CSIR-FORESTRY RESEARCH INSTITUTE Forest Products and Marketing Division

bdobiri@csir-forig.org.gh

INTRODUCTION

- Biomass for energy including wood for energy is in the spotlight globally
 - Renewable energy
 - Wood is used for heat/energy everywhere in the world

GHANAIAN CONTEXT

- In Ghana wood is a major heat and income source
 - key to food and livelihood security in both urban and rural areas
 - Used by 73% and 25% of rural and urban people as a heating source for households
 - Food processing in the service industry
 - Institutions and industries
 - Production, trade and consumption offers employment and livelihood for both rural and urban people (2 million+)

MAIN DRIVERS OF WOOD ENERGY PRODUCTION AND DEPENDENCY

- Poor agricultural income
- Major alternative income source in most farming areas
- Poor management of wood energy resources
- Concentration on timber
- Expensive alternative energy sources??

- Hardly any effective policy to regulate exploitation and marketing and trade in fuelwood and charcoal until recently?
 - inadequate empirical INFORMATION for understanding the dynamics for policy planning

OBJECTIVE OF PRESENTATION

- PROVIDE Update on the status of the Ghanaian wood energy value chain with emphasis on:
 - Main Resources
 - Transformation/Production Technologies
 - Utilization Pathways

SOURCE OF INFORMATION

Literature

▶ 6 Baseline studies (2011-2018) to inform the design of options for sustainable wood energy production in Ghana

METHODS: STUDY AREA

- Study sites
- Producing areas
- Marketing & consuming areas

Fig 1: Ecological map showing study sites

DATA AND ANALYSIS

- **❖**Literature
- **❖Community consultations**
- **❖Questionnaire survey of over 1500 actors (resource owners, producers, transporters, traders, associations, officials)**
 - DATA
 - Activities in value chain, costs and returns at nodes along the chain,
 - Resource characteristics, availability, governance, processing technology and profitability, marketing and distribution, challenges and opportunities

❖Quantitative and descriptive analyses

Overview of the Ghana Wood Energy Value Chain

Charcoal and firewood supply chain

OVERVIEW OF CHARCOAL VALUE CHAIN

- **□** 80% men in production and transportation
- **□90%** women involved in marketing and utilization

charcoal value chain actors, activities & inter-connections

Fuelwood fish smoking

Resource: Sources for charcoal and firewood

- ■98% of producers extract wood for fuel from natural sources
- ■2 million cubic meters per annum (FIP, 2012)

Use and management of resources

- All year round production
- Uncoordinated inter-sectoral efforts for resource management
- No standard management of fuelwood resources except natural regeneration
 - Average regeneration age is 7 years (local knowledge)
 - Erosion of traditional conservation measures

RESOURCE GOVERNANCE

- ACCESS to WOOD FOR CHARCOAL and Firewood
 - Government land: paid permit from FSD
 - Communal land: fee paid to chief by gangs/ no payment by locals
 - Family land & Farm land: sharing agreement for in-kind payment with charcoal produced
 - Farmland- Firewood: Pay Owner or owner harvest for sale
 - Woodlots –Firewood- Pay Owner or owner harvest for sale

Species extracted

- > 70 species reported by producers being extracted for fuel around Ghana
- Most frequently extracted are native hard wood species
 - with high calorific values
 - Anogeissus, Ptericarpus, Vitellaria paradoxa, Khaya, Etctransition and savannah
 - Celtis, Albizia- Forest Zones
 - Mangroves, Neem, Cassia- Coastal
 Obiri et al 2014 and 2015

OWNERSHIP OF FUELWOOD RESOURCES

IMPORTANT SPECIES

VR-Mangrove: Fuelwood, construction

CR, GAR-Albizia (Okoro): firewood, timber

CR, GAR- Celtis (Esa): firewood, timber

WR-Rubber: latex and firewood

GAR, CR, VR- Neem: firewood, medicines

WR, CR-Cocoa: chocolate and firewood

FORESTRY RESEARCH INSTITUTE OF GITAITA

VEHICLES IN FUELWOOD TRANSPORT

Wood fuel species availability

❖Declining stocks of preferred fuelwood & charcoal species

Commercial producers

➤5-20km to harvest wood for charcoal

Production technologies -Firewood

Chainsaw & Machete/cutlass for harvest and cross cutting into chunks Axe for splitting for use

PROCESSING TECHNOLOGIES

Earth mound

Brick kiln

Metal kiln

Economics: profitability

Profitability	Earth Mound	Brick kiln	Metal kiln
NPV (GH¢)	2,400	3,240	22,290

PRODUCTION CAPACITY-Earth mound

1- 4 or more mounds set to burn for one production cycle in 10-15 days

- Average mound size: 43-76m³
- Wood volume per mound: 3-7.5
- Output per cycle (producer reported figures)

Mean (40kg bags)	116	
Min	2	
Max.	700	
STDEV	122	
N	204	

^{*}Min = subsistence producer to supplement farm income

^{**}Max = commercial production by gangs

DISTRIBUTION AND MARKETING

- Packaging in 40/20 kg bags
- Distribution/Transportation
 - 150- over 300 (40kg) bags charcoal per truck
- Road accidents common from toppling
- * 75% distributed within Ghana urban markets
- * Rest for regional and international markets

Marketing: Mangrove Wood

PROFITS ALONG THE CHARCOAL VALUE CHAIN

- Marginal profits per unit of bag
- ❖ Less than 1USD PER 40 KG BAG gained at each node
- **❖** Wholesaler earns highest = 16.7%

Profit along the firewood value chain

of profit

CONSTRIANTS ALONG THE CVC

1. 80% producers report decreasing feed stocks

- All year round production
- Uncoordinated inter-sectoral efforts for resource management
- Climate threat

Creaming wood for charcoal in Ghana savannah woodlands

CONSTRAINTS: TECHNOLOGY

2. Inappropriate harvesting techniques leading to:

Poor coppicing or regeneration of natural stumps

Constraints-Firewood VC

- ■No storage, wood left in the open to rot at marketing and consumption sites
- ■Poor energy content

Constraint-Production & Consumption

❖Supply-demand Surplus

>Surplus may include waste

3. RUDIMENTARY PROCESSING TECHNOLOGY

- 90% producers report drudgery and health hazards
 - Smoke, heat and dust from traditional earth mound charcoal production
 - 95% producers lack knowledge on improved kilns

4. Constraints -Transportation

- > 75% Poor road network -road accidents
- > 60% high transport cost

5. Constraint marketing and utlization

98% traders report Poor Quality charcoal and packaging produces charcoal dust on markets

- 90% consumers report poor quality, burns quickly with lots of ash
 - Species of low calorific wood values being burnt for charcoal due to scarcity of suitable hard wood species

CONCLUDING REMARKS

- Charcoal production is viable with available technology based on NPV values
- Commodity chain is well established BUT:
 - Process is very labour intensive and has health risks
 - Profit margin per unit is less than a dollar. Hence, several mounds set to burn wood from wide range of species escalating deforestation
 - Improved processing technologies may reduce health risks and are more profitable but:
 - **■** Improved kiln is expensive compared with earth mound
 - Raw material must be guaranteed
- Possibility of briquette production from charcoal dust

CONCLUDING REMARKS

- Need for plantation wood to sustain charcoal and firewood industry is imperative as suitable species are declining in natural stands
 - Charcoal firewood production from woodlot is viable But:
 - Sufficient land resources required if production is to be sustainable throughout the year
 - Species used must be fast growing at least 3-5 year rotation and of comparable energy values to preferred species
 - Attention paid to soil and rainfall regimes

(Obiri et al., 2014 and 2018)

Dedicated Bamboo plantations for carbonization into charcoal and briquette

- Commercial plantations
- Hectare and production scales unknown

Dedicated plantations for energy: Miro project

- Located in Ahanti Region
- Production of biomass and charcoal for domestic and international market
- Better packaging

Dedicated plantations for energy: Neem woodlot

- ■Located in Ashanti Region
- ■Producing charcoal from Neem using Japanese retort kiln

Neem plantation

Neem wood packed in a kiln prior to carbonization

Dedicated plantations for energy-APSD-Project

- Located in Atebubu in BA
- **❖Plans of 21,000 ha of energy plantations**
- **❖9,000** planted

APSD tree nursery

APSD Eucalyptus plantation

Dedicated plantations for energy: Cassia and Neem for charcoal and food

- ■Located in Volta Region
- ■60 acre land for crops and wood
- Charcoal production using brick kiln

Sawdust for co-generation to heat and electricity

- In use by large scale sawmills
- Obsolete and inefficient Machinery
- 60% sawdust not used may be burnt causing pollution

Essential Gaps

- Empirical information on volumes of wood energy resources and flows
- Economics
- Strategic management of resources-models
- Efficient technology research & deployment
- Efficient use of waste and residues
- Policy Practice linkages
- > ETC

ACKNOWLEDGEMENT

1. Funds

- 1. Danida-PEN -2007-2011 (Economics of rural forest dependency)
- 2. Inbar-China-2011 (Market chain analysis-Bamboo for fuel in Ghana)
- 3. CSIR-FORIG-Ghana government-2012-(Emerging woodfuel spp.)
- 4. EU & Tropenbos Ghana-2012-2014-(Charcoal value chain)
- 5. SNV-Ghana -2015 (Fuelwood value chain)
- 6. International tropical timber organization (ITTO), Japan-2013-201
- 7. FAO-training in rapid appraisal of Bio-energy systems-2017
- 8. German Research and Education Ministry-2018-2019 -RE PILOT
- Respondents in study areas for information
- Colleagues researchers-CSIR, FSD, Energy Commission, SNV, KNUST, UNER

Publication

Darko Obiri. B, Owusu-Afriyie, K.,
Kwarteng E,, Nutakor E, (2015). Fuel
Wood Value Chain Report. The
USAID/Ghana Sustainable Fisheries
Management Project (SFMP).
Narragansett, RI: Coastal Resources
Center, Graduate School of
Oceanography, University of Rhode
Island and SNV Netherlands
Development Organization.
GH2014_SCI011_SNV. 157 pp.

THANKS

