

Dr. Agr. Guido Bezzi

Resp. Agronomy Area CIB – Consorzio Italiano Biogas e Gassificazione - Italy

Livestock waste to biogas: the Italian BiogasDoneRight® model

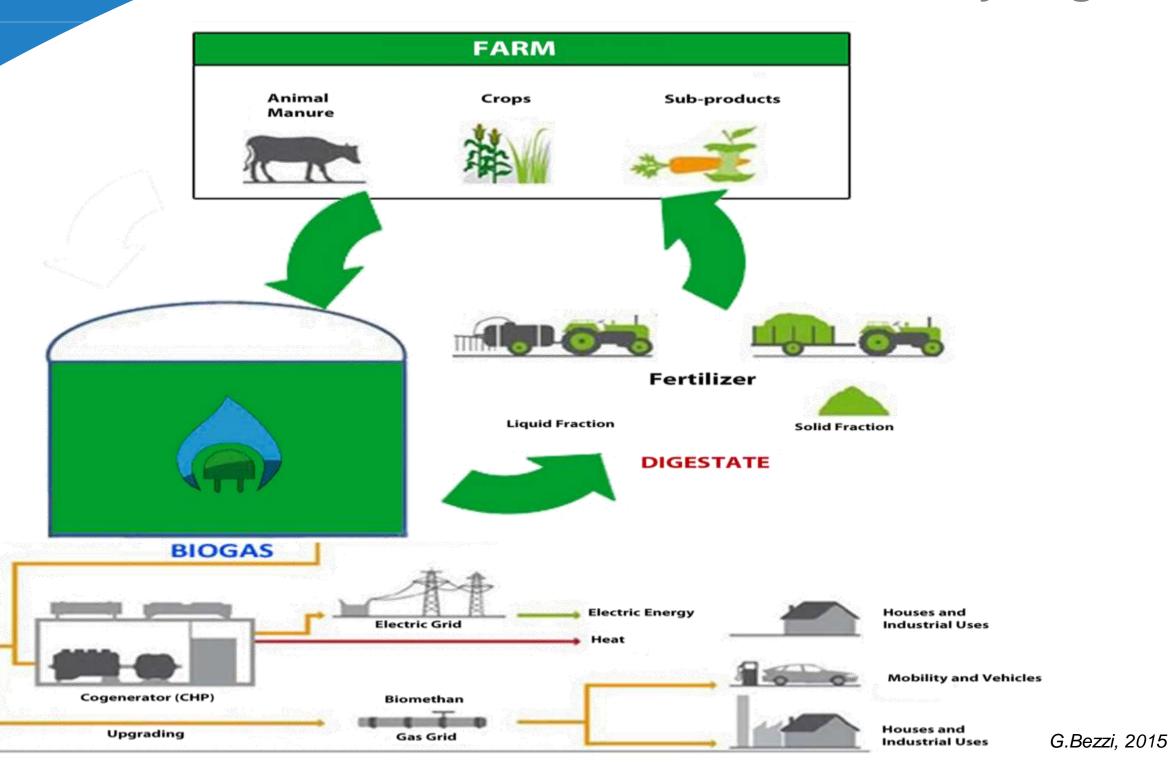
GBEP – IEA Bioenergy Workshop "Examples of Positive Bioenergy and Water Relationships"

Royal Swedish Academy of Agriculture and Science (KSLA)
Stockholm, 25-26 August 2015

Purpose

Improve the traditional farming and livestock activity with agro-energy production

- Environmental sustainability (emissions reduction CO₂ and NH₃, soil and water use efficiency)
- New Agronomic practices
- Economic and social development (new green jobs, valorisation of agriculture products)
- Bioenergy without lowering food and feed



Multifunctional and Sustainable Agricolture

Circular Model and Rural synergies

Status

BIOGAS IN ITALY

- 3° biogas in the world, behind
 China and Germany
- 2 Mrd Nmc of methane produced per year
- 4,5 Mrd € of realized investments
- More than 1.300 plants on farms today
- About 1000 MWe installed power and 8 GWhe/year produced
- 12.000 stable jobs from the sector

Biogas Done Right® Status

BIOGAS FROM CONVENTIONAL AGRICOLTURE

90		1st year	2nd year					
opping	bare soil	corn grain	bare soil	soy bean				
noct	nov dec jan feb mar	apr may Jun Jul Aug Sept oct	nov dec jan feb mar ap	or may Jun Jul Aug Sept oct				
Ě	GHG emissions (CO2, N2O, etc.) soil C erosion		OHG emissions (CO2, N2O, etc.) soil C erosion					

- Biogas produced only by annual and energy crops and/or manure/sub-products
- Replacement of food&feed crops

Double cropping

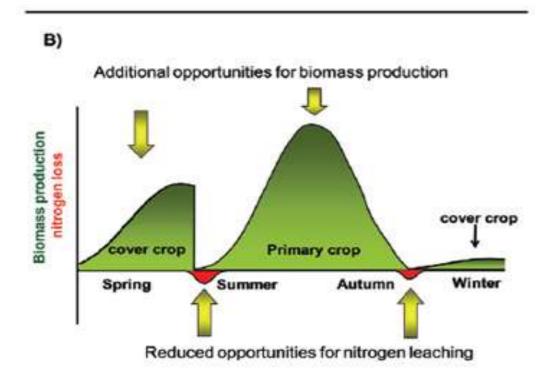
Biogas Done Right® Status

BIOGASDONERIGHT®: AGRICOLTURAL ECOLOGICAL INTESIFICATION

1st year			2nd year				
cover crop (triticale)	cash crop (soy bean)		cover crop (rye grass)	cash crop (corn grain)			
nov dec jan feb mar apr	may Jun Jul Aug Sept	oct	nov dec jan feb mar ap	pr may Jun Jul Aug Sept oc			
	no tillage seeding			no tillage seeding			

cover crop for energy cash crops food/feed market bare soil

- Biomass produced from Cover Crops (second harvest)
- Food&feed crops are preserved
- Integration with livestock effluents, sub-products and organic waste
- Perennial and nitrogen fixing plant in set-a-side or degraded lands
- Use of digestate and improve soil fertility


Biogas Done Right® is a positive bioenergy

What is its impact on water?

Missed opportunities for biomass production Annual grain crop Summer Autumn Winter Large opportunities for nitrogen leaching

Biogas Done Right®

Positive impacts for water quality

- Nitrogen leaching risk reduction
- Organic nitrogen stabilization
- Increased organic carbon in soils
- Reduction of chemical fertilizers

- Reduction of aquifer pollution
- Increased water soil capacity
- Increased hydrologic stability

Positive impacts for water availability

- Year-long soil coverage
- Rotation Crops instead of monocoltures
- No tillage, minimum tillage, strip tillage
- Digestate distribution techniques (storage, ombelical, Xerion, ecc.)
- Drip irrigation with renewable fertilizers or liquid fraction of digestate

- Reduction loss by evaporation
- Increased soil yields (10-15%)

- Conservation soil structure
- High water use efficiency
- Water saving (up to 10%) thanks to fertirrigation with liquid digestate

Reasons for implementing the model

CONVENTIONAL BIOGAS

Increasing energy demand

Electricity, Biofuels and Heat

Renewable raw material

Fertilizers and Biochemicals

BIOGASDONERIGHT®

Growing global population

Increase of food&feed production

Safe environment

Carbon negative agriculture

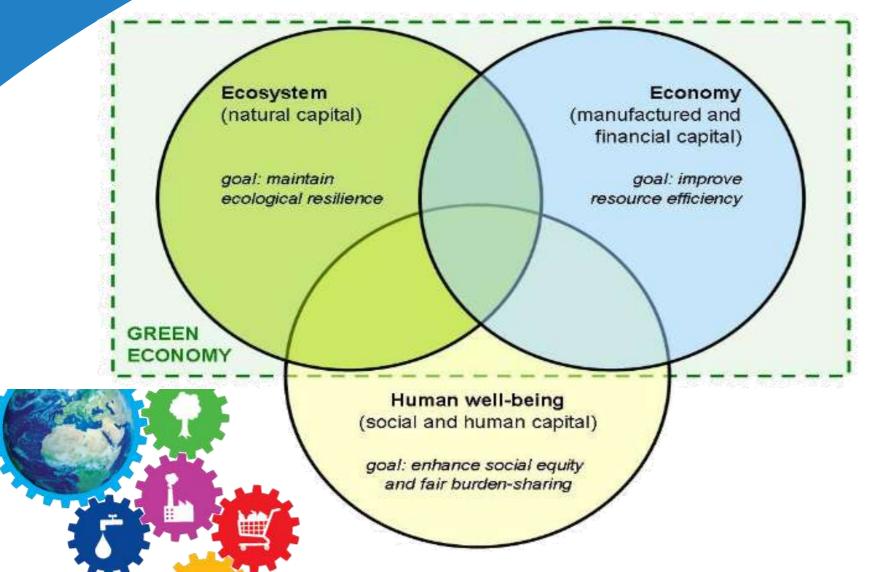
Clean water and water saving

Soil fertility and hydrologic stability

Reasons for implementing the model

Return on investment opportunities as land improvement

Optimization of organic cycle

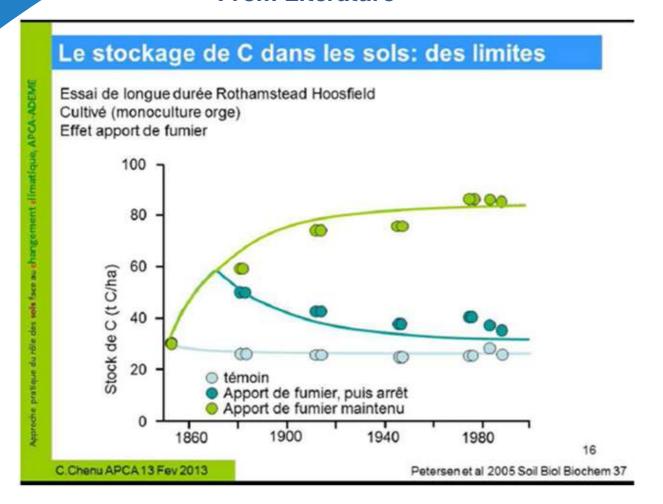

Valorisation of sub products and dedicated crops

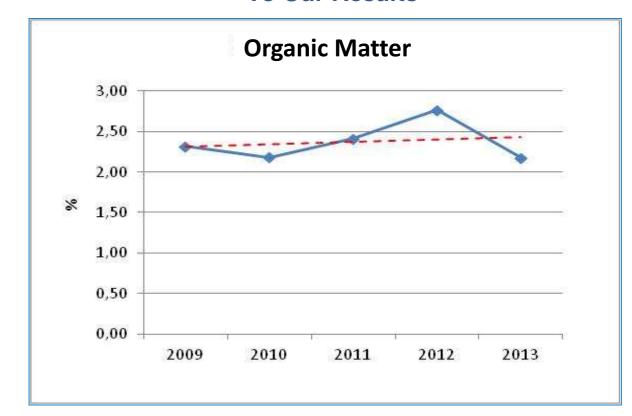
Source: European Environment Agency

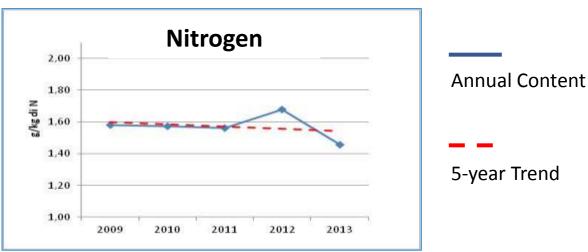
Biogas Done Right®

Key Enabling Factors

- In line with EU Roadmap to a Resource Efficient Europe (COM(2011) 571)
- To value waste and byproducts and reduce raw material import
- To optimize agricultural costs (i.e.: cultivation costs drop of 290€/ha following reduction of chemical fertilizer use)

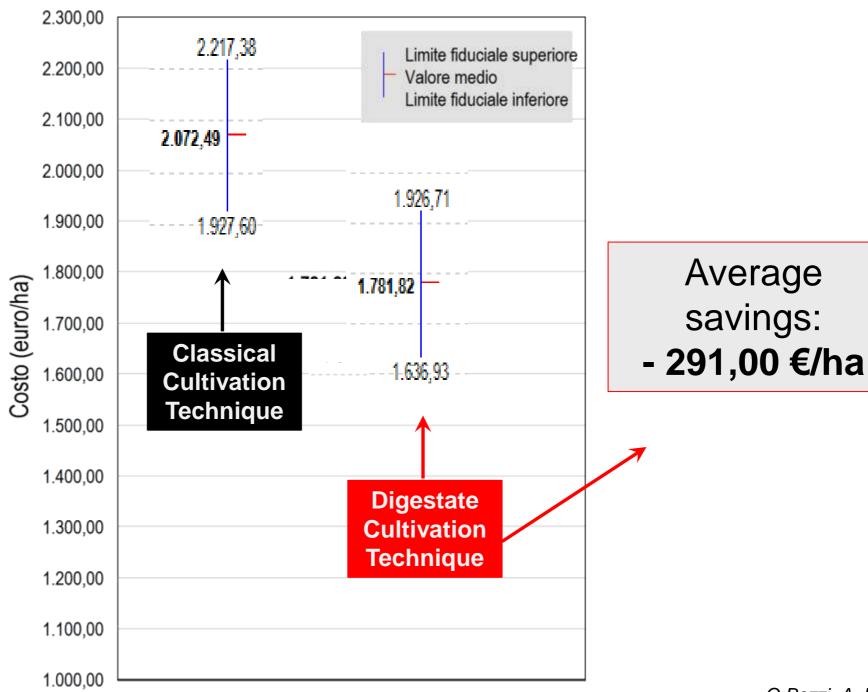




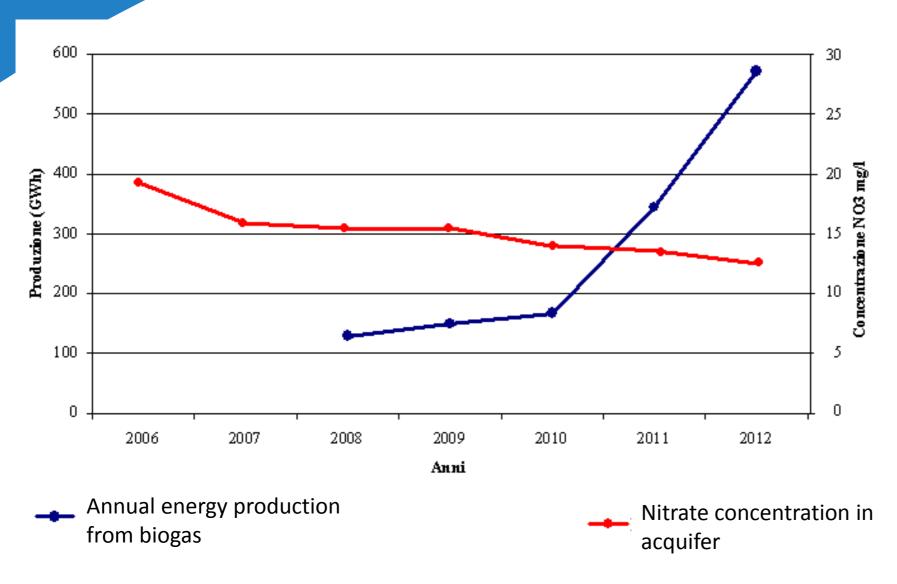

Achieved Outcomes: Soil fertility

To Our Results

From Literature



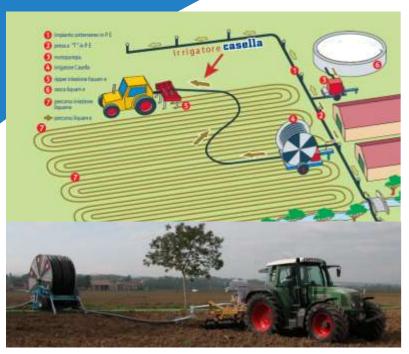
Achieved Outcomes: Digestate Value



Achieved Outcomes: Economic Value

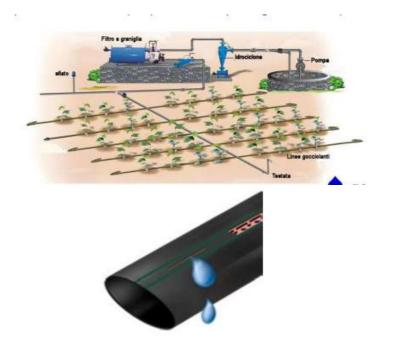
	Conventional Agriculture							
	Fase 1	Fase 2	Totale parziale	Fase 3	Fase 4	Fase 5	Gestione innovativa	Gestione integrata
Allevamento	Allevamento (euro/ton)	Rispetto Direttiva (euro/ton)	Fase 1 e 2 (euro/ton)	Biogas (euro/ton)	Separaz digestato (euro/ton)	Tecnica colturale (euro/ton)	Fase 3 - 4 - 5 (euro/ton)	Fasi totali (euro/ton)
Suino da carne	2,313	-7,418	-5,104	5,816	0,246	5,984	12,046	6,942
Bovino da carne	-12,620	-5,009	-17,629	5,816	0,104	5,984	11,905	-5,724
Bovino da latte	-4,600	-3,979	-8,580	5,816	0,034	5,984	11,834	3,254

Nitrates Leaching


Development of biogas and management of the nitrates in Veneto

P.Belcaro, F.Schenato, 2015

- Biogas reduces 13,3% of nitrates in vulnerable areas
- Quality of aquifer in Veneto is improved



Achieved Outcomes: Water Saving

- Liquid fraction of digestate is applied in fertirrigation up to 10% water solution
- Water solution is used with pivot or ranger systems
- Fertirrigation save water and increases yields up to 15%
- Lower concentration of digestate can used in drip fertirrigation
- Whole digestate drip fertirrigation is studied

Main challenges encountered

Politics

Laws

Public Opinion

Potential Scaling-up and replicability

- BIOGASDONERIGHT® can fit properly with complex or simple techinical solutions that are able to:
- Improve igienical and environmental conditions
- -Improve safety in food preparation
- -Improve soil fertility also in sub-saharian area
- Improve energy availability
- -Improve instruction and work
- BIOGASDONERIGHT® is a universal solutions that sustain development.

BIOGASDONERIGHT® CONCEPT

NEW AGRICOLTURE FOR FOOD&FUEL

Biogas can introduce a New Agricolture for Food & Fuel with Sustainabile Agricultural Intensification.

The introduction of Cover Crops for energy, require a double cropping system.

In the same year is possible to produce food and fuel in the same soil.

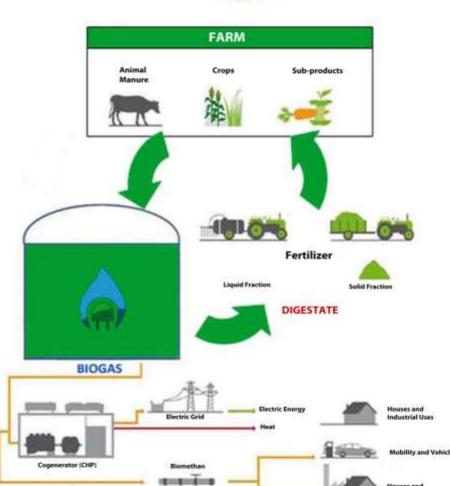
Biogas is the destination of cover crops.

ENERGY AND DEVELOPMENT

Energy and Food production are at the beginning of development.

BIOGASDONERIGHT* is a sustainable solution to promote safe productions with safe environment.

BIOGASDONERIGHT* solution is simple, reliable and adaptable to promote safe development.


INCREASE PRODUCTIVITY

Farmers are able to increase productivity with:

- technical improve of farm equipment
- improve soil fertility
- cultivation with reduced inputs
- application of sustainable agricultural intensification

With feeding the soil is possible to feeding the planet safely

OPTIMAL USE OF NATURAL RESOURCES

Biogas can optimize the farm production cycle because:

- can valorize subproducts, reduce production costs and improve quality of productions.
- optimize use of fertilizers, water, soil fertility and soil use efficiency.

Today 290€/ha is the average safe cultivation cost in Italy with Biogas

ENVIRONMENT AND SOIL FERTILITY

Digestate can close the carbon cycle with improve organic matter in soil.

The soil is good sink for atmosferic carbon in order to reduce global warming.

Biogas can introduce a Carbon Negative Agricolture and when the digestate is used properly can safe environment.

NUTRIRE LA TERRA,
PER NUTRIRE IL PIANETA.

Thank you

Dr. Agr. Guido Bezzi

Resp. Agronomy Area CIB – Consorzio Italiano Biogas e Gassificazione

CIB

Consorzio Italiano Biogas e Gassificazione

segreteria@consorziobiogas.it

P.IVA: 09248721004

Adress

c/o Parco Tecnologico Padano Via Einstein, Loc. Cascina Codazza Lodi (LO)

Secretary

Telefono +39(0)3714662633 Fax +39(0)3714662401

GBEP – IEA Bioenergy Workshop "Examples of Positive Bioenergy and Water Relationships"

Royal Swedish Academy of Agriculture and Science (KSLA) Stockholm, 25-26 August 2015