Policies to incentivize biogas production from waste – European case studies

16/05/2023

Lucile Sever, EBA Policy Officer
• EBA in a nutshell
• Overview of the EU biogas and biomethane production from biowaste, industrial waste and sewage sludge
• EU policies to incentivize biogas production from waste
EBA in a nutshell
EBA members operate across the whole biogases value chain

+200 companies

46 National Associations

Research Centres
Overview of the EU biogas and biomethane production from biowaste, industrial waste and sewage sludge
Re-thinking our economic model switching to a circular economy

Source: EBA Statistical Report 2021
+18 bcm of biogases are being produced in Europe today

18.4 bcm (196 TWh) of combined biomethane and biogas in Europe

Produced from:
- 18,843 biogas plants in 2021
- 1,067 biomethane plants in 2021

Evolution of biogas and biomethane production (bcm)

Source: EBA Statistical Report 2022
Waste is more widely used for biomethane production

Biomethane plants use relatively more biowaste and industrial waste than biogas plants.

Source: EBA Statistical Report 2022
The installation of new plants digesting biowaste, sewage sludge and industrial waste is stable over the years.
The sector has the potential to deliver +35 bcm by 2030

2030 national biomethane potentials

Europe could produce 41 bcm (400 TWh) of biomethane by 2030 from anaerobic digestion and gasification

Source: Gas for Climate 2022
16% of biomethane produced from waste in 2030

In 2030, 9% of EU biomethane will be produced from industrial wastewater, 5% from biowaste and 2% from sewage sludge.
EU policies to incentivize biogas production from waste
Unlocking sewage sludge potential in the UWWTD

At EU level, the treatment of urban wastewaters is regulated by the **Urban Wastewater Treatment Directive (UWWTD)** ➔ environmental objective (collection and treatment standards for agglomerations)

Recast of the UWWTD – Article 11 of the proposal of the EU Commission:

- Introduces an obligation to **achieve energy neutrality for all urban wastewater treatment plants above 10 000 p.e. by 2040**

 ➔ **Total annual renewable energy produced** at national level by all UWWT plants = the **total annual energy used** by all such UWWT plants.

Huge driver for implementing anaerobic digestion in UWWT plants
Unlocking biowaste (and industrial wastewaters?) potentials in the WFD

<table>
<thead>
<tr>
<th>2018 revision of the Waste Framework Directive (WFD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal of the EU Commission pending for adoption, foreseen for 7/06/23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2023 revision of WFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal of the EU Commission pending for adoption, foreseen for 7/06/23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2024 and 2028 revision of WFD?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Could target the prevention, preparing for re-use and recycling of waste, including specific waste streams</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2023 revision of WFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will focus on:</td>
</tr>
<tr>
<td>• policy options to bring about a more circular and sustainable management of textile waste</td>
</tr>
<tr>
<td>• the feasibility of setting food waste reduction targets.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2024 and 2028 revision of WFD?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Could target the prevention, preparing for re-use and recycling of waste, including specific waste streams</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2018 revision of the Waste Framework Directive (WFD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Target of 65% of municipal waste collected and prepared for reuse and recycling by 2035.</td>
</tr>
<tr>
<td>• Mandatory biowaste separate collection from 1 January 2024 onwards.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2023 revision of WFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver for biogas from biowaste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2024 and 2028 revision of WFD?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential driver for biogas from food waste?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2023 revision of WFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential driver for biogas from industrial wastewaters?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2024 and 2028 revision of WFD?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential driver for biogas from industrial wastewaters?</td>
</tr>
</tbody>
</table>
Case studies at national level

Linköping, Sweden
- In 2012, “green bag” separate collection system implemented for food waste in Linköping.
- By 2023, 88% of the municipalities collect source-separated food waste.
- Additional national target: by 2023, 75% of food waste sorted and treated biologically so that plant nutrients and biogas are recovered.

Ljubljana, Slovenia
- From 2011: introduction of a door-to-door collection system + lowering the frequency of collection for residual waste + a strong communication strategy.
- In 2015, landfill centre transformed in waste management centre to perform anaerobic digestion of biowaste.
- By 2016, more than 63% of collected waste was sorted correctly.

Milan, Italy
- In 2012: introduction of the use of transparent bags for the collection of the residual fraction + door to door waste collection system + biowaste collected treated through AD for the production of biogas and compost.
- Milan’s overall separate collection rate already reaching 62.6% in 2020.
THANK YOU!

Lucile Sever, Policy officer
sever@europeanbiogas.eu

Re-thinking our economy. Making the energy transition happen.

www.europeanbiogas.eu
Production of biomethane from agro-industrial wastes – CASE STUDY OF AN INNOVATIVE TECHNOLOGY FROM FRANCE

Geoffrey KARAKACHIAN
Project in a nutshell

• **BIOMETHAVERSE**: Demonstrating and Connecting Production Innovations in the **BIOMETHaNe uniVERSE (HORIZON EUROPE)**;

• **54** months (October 2022- March 2027);

• **22** partners in **9** countries: ISINNOVA, ENEA, CAP, POLIMI, SIAD, CIC (IT), EBA (BE), FAU, DBFZ, EE (DE), UABIO, MHP (UA), BLAG, CERTH (EL), RISE, CORTUS, WARTSILA, SGA (SE), ENGIE (FR), AERIS, LEITAT (ES), DTU (DK);

• **9,871,773 €** of EC funding (**70%** of EU funding);

• To **diversify** the technology basis for biomethane production in Europe, to **increase** its cost-effectiveness, and to **contribute** both to the uptake of biomethane technologies and to the priorities of the SET Plan Action 8.

• Five innovative biomethane production pathways in five European countries: France, Greece, Italy, Sweden, and Ukraine.
Pillars of the project

• Demonstration of Innovative Biomethane Pathways

• Assessment and Optimisation of Innovative Biomethane Pathways

• Replicability, Planning Decisions, Market Penetration, and Policy Dimension

• Dissemination, Exploitation & Communication
Demonstration of Innovative Biomethane Pathways

- **Design** and **implementation** of demonstration activities:
 - ✓ In-Situ and Ex-Situ Electromethanogenesis (**EMG**) in France
 - ✓ Ex-Situ Thermochemical/catalytic Methanation (**ETM**) in Greece
 - ✓ Ex-Situ Biological Methanation (**EBM**) in Italy
 - ✓ Ex-Situ Syngas Biological Methanation (**ESB**) in Sweden
 - ✓ In-Situ Biological Methanation (**IBM**) in Ukraine

- **EMG Consortium:**
 - LEITAT
 - DTU
 - FAU
 - aeres
 - ENGIE Lab
Demo Site in France

Demonstration site: EPPEVILLE, HAUT DE FRANCE REGION

Feedstock: 35,000 t/y agro-industrial residues

Type: Continuously Stirred Tank Reactor // Mesophilic // Upgrading via membrane

The unit injected its first m³ of biomethane in December 2016.

Several solid and liquid feed lanes, adapted to the type of input.

Main numbers:

- 1,815,000 m³/y of biomethane
- Up to 230 Nm³/h injected into NG grid
- 6,840 m³ digestion volume (HRT > 50 d):
 - 2 Main digesters of 2280 m³
 - 1 Post-digester of 2280 m³
- 27,000 m³ of digestate storage / Valorization of digestate by land spreading
- (6,000 ha, 31 farms).
Electromethanogenesis – technological working principle

- Electromethanogenesis is at the frontier between electrolysis (H₂ production in-situ) and biological methanation (H₂ + CO₂ conversion into CH₄).
- The technology relies on the use of electrodes inserted into digestate or given medium. Under voltage, the micro-organism activity within the biofilm attached to the electrodes is boosted and leads to higher biogas production and/or quality.
- Fine tuning of electrochemistry and biochemistry favorize the production of CH₄.
- Technology aiming at increasing the biomethane production of AD unit and gas quality.
State of the art of electromethanogenesis

1 chamber reactor: Boost of biogas production

- +91% Biogas
- +43% CH₄

2 chamber reactor: Biogas upgrading towards high CH₄ %

- CH₄ ≥ 97.9 ± 2.3%
- 0.8 m³ CH₄/m³ reactor/day

2020 labscale study on 1L reactors (ENGIE x LEITAT collaboration)

2021 labscale study on 0.4L reactors (DTU)
Ambition: Increase biomethane production on the AD unit using the effluent digestate, biogas of the main digestor and external green electricity from solar and wind.

Single chamber reactor (1c-AD-BES)

- Electrodes directly immersed in the digestate.
- **Planned pilot is a reactor of 1 m³ reactor working at the same mesophilic temperature of the main AD plant.**
- **Electrical power source < 2 V** driven by a renewable energy mix from local wind and photovoltaic electricity generators.
- **Enhancement of the bioelectrode geometry and electron transfer properties by prior surface treatment**
- Coupling the 1c-AD-BES downstream the main digester, the aim is to have a surplus production of 100 L CH₄/m³/d to the already existing production.

Double chamber reactor (2c-AD-BES)

- Electrodes separated by a membrane, water oxidation (anodic part) and CO₂ (biogas reduction (cathodic part).
- **Planned pilot is a reactor of 1 m³**
- Injection of biogas (from the main digestor first and then from 1c-AD-BES reactor), enabling an efficient power-to-gas process in a H₂O/CO₂ electrosynthesis cell
- **2c-AD-BES is an upgrading step towards maximum biomethane purity output.** At lab scale, the current two-chamber system can produce 200-1000 L CH₄ per day per m³ reactor volume
Main challenges

Performances challenges:

Previous lab experiences showed that two main parameters contribute to increase biogas/biomethane production in AD-BES:

- Available surface for biofilm growth, due to electrodes presence
- Application of an optimal voltage for the stimulation of electro-active microbes.
 - trials ongoing (2023) : (LEITAT-DTU-FAU)
 1. Pretreatment of electrode materials → maximizing the bioelectrochemical performances
 2. Pretreatment of the substrate (AD digestate) → facilitating the substrate degradation

Operational challenges:

- Feeding conditions at upscaled level: continuous feeding investigation
- Inoculation of anode and cathode with proper electro-active biofilms
 - Pre-pilot testing at 10/15 L scale (2023-2024) (LEITAT-DTU)
- Safe usage of the pilot on an operational demo-site
 - SAFETY Studies (ENGIE-AERIS):
 - HAZID study (Sept. 2023):
 Hazard identification considering the pilot in its environment
 - ATEX study (2023):
 Identification of the ATEX zoning of the pilot and setting-up of mitigation measure → input for the future pilot localisation
 - HAZOP study (Jan. 2024):
 Operational hazard identification on the pilot usage

Pilote Operation

- 1 year testing 2025-2026
Initial Business perspective

Direct usage of electricity to produce **additional biomethane** will allow for a cheap option of energy storage: excess renewable electricity cannot always be injected into the electricity grid or is not economical at peak production times.

→ **EMG systems can be operated intermittently according to the availability of the renewable electricity.**

→ **In the perspective of a full-scale system integrated on an AD unit (at the post-digester level):** EMG offers a possible add on solution for already existing AD plants. With a moderate investment in terms of CAPEX and very low OPEX, a significant increase of biogas production can be achieved which could lead to a **decrease of about 13% of biomethane cost compared to 2022 reference for an increase production of targeted 43% compared to sole AD conditions.**

→ **Policy :** In France, injection **requires a clarified regulatory framework adapted** to these technologies. An **authorisation to inject the gas** within the framework of a "regulatory sandbox" to facilitate the implementation of innovative projects is possible.

➢ **Methodological analysis of the pilot :**
 ➢ Costs (OPEX & CAPEX)
 ➢ Operation (safety, usage, digestate quality)
 ➢ Performances (biogas & biomethane production)
 ➢ Mass and energy balance
 ➢ Bill of material

<table>
<thead>
<tr>
<th>Data provision all along the project for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• WP3 Assessment and Optimisation : assessment of the demonstrators as built within the project, and of their potential optimised and upscaled configurations</td>
</tr>
<tr>
<td>• WP4 Replicability : assessment of the replicability potential of technology pathways adopted and tested by demonstrators.</td>
</tr>
</tbody>
</table>

Towards market penetration and stakeholder acceptance
Thank you!

Follow Biomethaverse:

www.biomethaverse.eu
@European_Biogas
@European_Biogas_Association

Contact:
Geoffrey.karakachian@engie.com
+33 (0) 149 226 876
Gaspard.bouteau@engie.com
+33 (0) 149 224 956

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.
MEETS Methodology – understanding the replicability of national biomethane policies

GBEP Webinar Series 2023: Co-benefits of biogas and biomethane

Promoting anaerobic digestion for waste management

Stefano Proietti, Loriana Paolucci

ISINNOVA
Who we are

• Research and consultant Institute founded in 1971

• Consolidated experience in energy efficiency, sustainable mobility, territorial systems, environmental sustainability

• 15 members staff with multidisciplinary background in engineering, statistics, economics, politics and informatics

• Long story of collaboration at national (Ministries, Regions, Provinces and Municipalities) and international level (European Commission, World Bank, European Bank of Investments, foreigner Ministries, Regions e Municipalities, etc.)

• Specialised skills in coordination of projects, analysis of and support to policies, impact assessment, evaluation of policies and technologies energy efficiency, monitoring of participation processes to policies.

• www.isinnova.org
Replication methodology

- **Inspirational methodology** for decision makers, project developers, etc.
- **INSPIRE** allows to estimate the Replication Potential of specific projects, technological solutions, policies, etc. in different contexts (cities, countries, etc.)
- Developed by ISINNOVA and already applied in other EU projects
- **Versatile method** that can be applied to different topics and scales
- Relies on different tools based on the same mathematical approach
MEETS: Replication Potential of National Policies

To assess the Replication Potential of biomethane policies (of Advanced countries) in Follower countries (applied in REGATRACE project, www.regatrace.eu)

1. Policy Evaluation
 ✓ Policy Evaluation Criteria → Ranking of policies in each Advanced Country

2. Replication Assessment
 ✓ MEETS Policy Replicability Method:
 o quantitative approach for estimating the Replication Potential that specific policies might have in different contexts
 o The results and conclusions of this analysis could be relevant for other countries with similar characteristics and priorities of the Follower Countries.
Dimensions and Variables

<table>
<thead>
<tr>
<th>MEETS Dimension</th>
<th>POLICY Variables</th>
<th>CONTEXT Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARKET</td>
<td>Potential for market transformation</td>
<td>Interest from key players to invest in the specific policy</td>
</tr>
<tr>
<td>EFFECTIVENESS</td>
<td>Cost Efficiency</td>
<td>Readiness of the regulatory framework</td>
</tr>
<tr>
<td>ECOSYSTEM</td>
<td>Environmental impact</td>
<td>Acceptance from relevant stakeholders</td>
</tr>
<tr>
<td>TIME</td>
<td>Persistency of impacts over time</td>
<td>Government/Institutional stability</td>
</tr>
<tr>
<td>SIDE EFFECTS</td>
<td>Support of positive side-effects</td>
<td>Responsiveness to National Plans /Institutional Priorities</td>
</tr>
</tbody>
</table>

ISINNOVA
Replication Diagram

INPUT

- **X-axis**: Variables dependent on the specific characteristics of the **POLICY**

- **Y-axis**: Variables dependent on the specific characteristics of the **CONTEXT** where the policy is supposed to replicated

OUTPUT

Replicability???
Overview of Results

<table>
<thead>
<tr>
<th>Policy</th>
<th>MARKET Replication Potential</th>
<th>ECOSYSTEM Replication Potential</th>
<th>EFFECTIVENESS Replication Potential</th>
<th>TIME Replication Potential</th>
<th>SIDE EFFECTS Replication Potential</th>
</tr>
</thead>
</table>

OVERALL REPLICATION POTENTIAL

<table>
<thead>
<tr>
<th></th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy 1</td>
<td>?</td>
</tr>
<tr>
<td>Policy 2</td>
<td>?</td>
</tr>
<tr>
<td>Policy 3</td>
<td>?</td>
</tr>
<tr>
<td>Policy 4</td>
<td>?</td>
</tr>
<tr>
<td>Policy 5</td>
<td>?</td>
</tr>
<tr>
<td>Policy 6</td>
<td>?</td>
</tr>
</tbody>
</table>

OVERALL REPLICATION POTENTIAL - COUNTRY X

- P6
- P2
- P1
- P4
- P5
- P3

ISINNOVA
Concrete Application

<table>
<thead>
<tr>
<th>Measure</th>
<th>Replicability Potential (RP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BE</td>
</tr>
<tr>
<td>AT2 - Guarantee of Origin system for gas labelling</td>
<td>42%</td>
</tr>
<tr>
<td>AT3 - Regulation on Transportation Fuels</td>
<td>58%</td>
</tr>
<tr>
<td>AT6 - Investment Grants</td>
<td>56%</td>
</tr>
<tr>
<td>AT7 - Green Gas Service Agency</td>
<td>52%</td>
</tr>
<tr>
<td>AT9 - National Emission Trading System</td>
<td>78%</td>
</tr>
</tbody>
</table>

Replication Potential: Austria - Ireland

Replication Potential: Austria - Czech Republic

Replication Potential: Austria - Belgium
Use of Replication Methodology

✓ This methodology helps to identify:
 • successful policies
 • policies that have *not generated important impacts* in terms of development of the biomethane sector
 • most replicable policies in the various national contexts.

✓ Useful in understanding how replicability is influenced by:
 • several *factors* that can go well *beyond the political priorities* identified by a country
 • *intrinsic and specific characteristics* of the policy
 • *context* where it is supposed to be replicated
THANK YOU
FOR YOUR ATTENTION!

Stefano Proietti
sproietti@isinnova.org

Loriana Paolucci
lpaolucci@isinnova.org